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Abstract
We consider a one-dimensional (1D) wire along which single conduction
electrons can propagate in the presence of two spin-1/2 magnetic impurities.
The electron may be scattered by each impurity via a contact-exchange
interaction and thus a spin-flip generally occurs at each scattering event.
Adopting a quantum waveguide theory approach, we derive the stationary states
of the system at all orders in the electron–impurity exchange coupling constant.
This allows us to investigate electron transmission for arbitrary initial states
of the two impurity spins. We show that for suitable electron wave vectors,
the triplet and singlet maximally entangled spin states of the impurities can
respectively largely inhibit the electron transport or make the wire completely
transparent for any electron spin state. In the latter case, a resonance condition
can always be found, representing an anomalous behaviour compared to typical
decoherence induced by magnetic impurities. We provide an explanation for
these phenomena in terms of the Hamiltonian symmetries. Finally, a scheme
to generate maximally entangled spin states of the two impurities via electron
scattering is proposed.

PACS numbers: 03.67.Mn, 72.10.−d, 73.23.−b, 85.35.Ds

1. Introduction

The remarkable recent progress in the fabrication techniques of nanometric semiconductor
structures has stimulated a rapid development of the emerging field of mesoscopic physics
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[1–3]. In particular, the fabrication of devices of a size shorter than the electron coherence
length has motivated the study of systems where the conduction electrons exhibit a fully
quantum mechanical behaviour. Such systems are the electron analogue of optical devices.
For instance, a multichannel quantum wire can be regarded as the electron counterpart of an
electromagnetic waveguide [3].

On the other hand, there is active research on the coherent dynamics of the electron spin
in mesoscopic systems [4] due to its potential applications to the control of electron transport
in so-called spintronic devices [5], as well as in the implementations of quantum information
processing devices [6]. Such interest is justified by the long decoherence times/distances
exhibited by electron spin in semiconductors [4].

In this paper, we consider a 1D wire with two spin-1/2 magnetic impurities embedded
at fixed positions. The 1D wire could be realized by a semiconductor quantum wire [2] or
a single-wall carbon nanotube [7], while each impurity could be implemented by means of
a single-electron quantum dot [4]. Conduction electrons entering the wire undergo multiple
scattering by the two impurities before being reflected or transmitted. At each scattering event
the electron and impurity spins elastically interact via an exchange coupling which can induce
a spin-flip. If the two impurities were static, the present system would reduce to the electron
analogue of a Fabry–Perot (FP) interferometer with partially silvered mirrors [8], with the
impurities playing the role of the two mirrors. It follows that our system can be considered
as a generalized FP interferometer where each mirror has a quantum degree of freedom: the
spin.

Since scattering with magnetic impurities is a well-known source of electron decoherence
[3], one would expect that, when mirrors with internal degrees of freedom are considered, the
typical resonance condition found in a standard FP interferometer [8] would be modified. The
expected loss of electron coherence is due to the fact that—contrary to scattering by static
impurities which give rise to well-fixed phase-shifts—scattering by magnetic impurities causes
an uncertainty in the phase shift of the scattered electron [9, 10]. Equivalently, decoherence
can be regarded as a consequence of the unavoidable entanglement arising between the electron
and impurity spin degrees of freedom [9, 11].

In the present paper, we analyse the case where two magnetic impurities are embedded in
the wire. In [12] we have investigated how non-local correlations arising when the scatterers
are in an entangled state affect the wire transmittivity. In the present paper, we will extend our
analysis providing all the details of our approach and expand the discussion of the possible
applications. In particular, we will show that perfect resonance, i.e. perfect transmittivity
for suitable electron wave vectors, appears for the singlet maximally entangled state of the
impurity spins. Remarkably, these resonant wave vectors turn out to be independent of the
electron–impurity coupling constant. Moreover, when this resonant condition is fulfilled,
perfect transmittivity is obtained for all possible electron spin states. In contrast, a large
inhibition of electron transmission through the interferometer is observed for the case of the
triplet maximally entangled state. As we have pointed out in a recent work, the above behaviour
of the singlet and triplet entangled states suggests a novel potential use of entanglement as a
tool to modulate the conductance of a 1D wire [12].

This paper is organized as follows. In section 2, we describe in detail the system and the
approach used to derive all the transmission amplitudes needed to calculate the single electron
transmittivity for any arbitrary initial spin state. In section 3, we discuss the transmission
properties of the interferometer for initial spin states with only one impurity spin up. Perfect
‘transparency’ is exhibited for the singlet state of the impurities. Section 4 is devoted to the
explanation of this phenomenon. In section 5, we show how our results suggest a possible
use of entanglement of the impurity spins as a tool to modulate the transmission of the wire.
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Figure 1. 1D wire with two magnetic impurities, labelled 1 and 2, embedded at x = 0 and x = x0,
respectively.

In section 6, we investigate the transmission properties of a different family of impurity spin
states, namely the one for which both spins are aligned. We show that, in this case, entangled
states exhibit no relevant interference effects. Finally, in section 7 we propose a scheme
to generate maximally entangled states of the impurity spins via electron scattering. The
form that an initial spin state must have in order to have perfect transparency is derived in
appendix.

2. System and approach

Our system consists of a clean 1D wire into which two spatially separated, identical spin-
1/2 magnetic impurities are embedded. We assume that single conduction electrons can be
injected into the wire. Due to the presence of an exchange interaction, each conduction electron
undergoes multiple scattering with the impurities before being transmitted or reflected. Let us
also assume that the electron spin state can be prepared at the input of the wire and measured
at its output (this could be achieved through ferromagnetic contacts at the source and drain
of the wire [4]). To be more specific, consider a 1D wire along the x̂ direction with the
two magnetic impurities, labelled 1 and 2, embedded at x = 0 and x = x0, respectively, as
illustrated in figure 1. Assuming that the conduction electrons are injected one at a time (this
allows us to neglect many-body effects) and that they can occupy only the lowest subband, the
Hamiltonian can be written as

H = p2

2m∗ + Jσ · S1δ(x) + Jσ · S2δ(x − x0) (1)

where p = −ih̄∇,m∗ and σ are the electron momentum operator, effective mass and spin-1/2
operator respectively, Si (i = 1, 2) is the spin-1/2 operator of the ith impurity and J is the
exchange spin–spin coupling constant between the electron and each impurity. All the spin
operators are in units of h̄. Since the electron–impurity collisions are elastic, the energy
eigenvalues are simply E = h̄2k2/2m∗ (k > 0) where k is a good quantum number. As the
total spin Hilbert space is 8D and considering left-incident electrons, it turns out that to each
value of k there corresponds an 8-fold degenerate energy level. Let S = σ + S1 + S2 be the
total spin of the system. Since S2 and Sz, with quantum numbers s and ms , respectively, are
constants of motion, H can be block diagonalized, each block corresponding to an eigenspace
of fixed s (for three spins 1/2, the possible values of s are 1/2, 3/2) and ms = −s, . . . , s (from
now on the subscript s in ms will be omitted). Let us rewrite equation (1) in the form

H = p2

2m∗ +
J

2

(
S2

e1 − 3

2

)
δ(x) +

J

2

(
S2

e2 − 3

2

)
δ(x − x0) (2)

where Sei = σ + Si (i = 1, 2) is the total spin of the electron and the ith impurity. Note that
in general S2

e1 and S2
e2 do not commute.
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Here we choose as spin space basis the states |se2; s,m〉, common eigenstates of S2
e2, S2

and Sz,5 to express, for a fixed k, each of the eight stationary states of the system as an 8D
column. Since S2

e1 and S2
e2 do not commute, the latter in general is not a constant of motion

and thus se2 in general is not a good quantum number.
To determine the transmission properties of the interferometer for a given arbitrary initial

spin state, we have to calculate the transmission probability amplitudes t
(s ′

e2;s)
se2 that an electron

prepared in the incoming state |k〉|s ′
e2; s,m〉 is transmitted in the state |k〉|se2; s,m〉. The

calculation of t
(s ′

e2;s)
se2 requires the exact stationary states of the system to be derived. To do

this, we properly generalize the quantum waveguide theory approach of [13] for an electron
scattering with a single magnetic impurity to the case of two impurities. Note that due to the

form of H (see equation (2)) coefficients t
(s ′

e2;s)
se2 do not depend on m, as it will be more clear in

the following. We first consider the subspace s = 3/2 and then the subspace s = 1/2.

2.1. Subspace s = 3/2

In this 4D subspace (m = −3/2,−1/2, 1/2, 3/2), both se1 and se2 can assume only the
value 1. It follows that in this subspace S2

e1 and S2
e2 effectively commute. The states

|se2; s,m〉 = |1; 3/2,m〉 are thus also eigenstates of S2
e1 and the effective electron–impurities

potential V in equation (2) reduces to

V = J

4
δ(x) +

J

4
δ(x − x0). (3)

Note that the two impurities behave as if they were static and the scattering between electron
and impurities cannot flip the spins. The four stationary states take therefore the simple
product form

|�k,1;3/2,m〉 = |φk〉|1; 3/2,m〉 (4)

where the second index in the left-hand side stand for se2 = 1 and where |φk〉 describes the
electron orbital degrees of freedom. To determine the wavefunction φk(x), we split the x̂ axis
into the three domains x < 0, 0 < x < x0 and x > x0 labelled I, II and III, respectively.
Solving the Schrödinger equation, the wavefunction φk,i(x) in each domain i = I, II, III is
readily written as

φk,I(x) = AI eikx + BI e−ikx (5)

φk,II(x) = AII eikx + BII e−ikx (6)

φk,III(x) = t
(1;3/2)

1 eikx. (7)

Setting AI to unity, the other four coefficients appearing in equations (5)–(7) can be found by
requiring the wavefunction to be continuous at the two boundaries x = 0 and x = x0 and its
derivative φ′

k(x) to exhibit a jump at the same points according to

φ′+
k (0) − φ′−

k (0) = 2m∗

h̄2

J

4
φk(0) (8)

φ′+
k (x0) − φ′−

k (x0) = 2m∗

h̄2

J

4
φk(x0). (9)

5 Of course, we could also choose the scheme in which the electron is first coupled to impurity 1, while the scheme
in which the two impurities are first coupled together is not convenient for the present problem.
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The last conditions are easily found integrating the Schrödinger equation across each impurity
(see e.g. [14]). This yields the following result for the transmission amplitude t

(1;3/2)

1

t
(1;3/2)

1 = 64

64 + πρ(E)J [16i + (e2ikx0 − 1)ρ(E)J ]
(10)

where ρ(E) = (
√

2m∗/E)/πh̄ is the density of states per unit length of the wire [1, 2]. t
(1;3/2)

1
is thus a function of the two dimensionless parameters kx0 and ρ(E)J . Note that it does not
depend on m due to the effective form (3) of V .

2.2. Subspace s = 1/2

In this 4D subspace se1, se2 = 0, 1 and thus S2
e1 and S2

e2 do not commute and se2 is not a good
quantum number. This is a signature of the fact that in this space spin-flip may occur. In each
of the 2D m = −1/2, 1/2 subspaces, the two stationary states are thus of the form∣∣�k,s ′

e2;1/2,m

〉 =
∑

se2=0,1

∣∣ϕk,s ′
e2,se2

〉 |se2; 1/2,m〉 (11)

where we have used the labelling index s ′
e2 = 0, 1 to indicate that the incident spin state of (11)

is |s ′
e2; 1/2,m〉 and where

∣∣ϕk,s ′
e2,se2

〉
describe the electron orbital degrees of freedom (from

now on we omit the index k). Note that in the case s = 3/2 discussed in subsection 2.1 s ′
e2

and se2 coincide.
For a fixed s ′

e2 = 0, 1 the two wavefunctions ϕs ′
e2,0(x) and ϕs ′

e2,1(x) in each domain
i = I, II, III turn out to take a form analogous to (5)–(7)

ϕs ′
e2,se2,I(x) = A

(s ′
e2)

se2,I
eikx + B

(s ′
e2)

se2,I
e−ikx (12)

ϕs ′
e2,se2,II(x) = A

(s ′
e2)

se2,II
eikx + B

(s ′
e2)

se2,II
e−ikx (13)

ϕs ′
e2,se2,III(x) = t

(s ′
e2;1/2)

se2 eikx (14)

with se2 = 0, 1. According to the above definition of s ′
e2, the stationary state corresponding

to a given s ′
e2 is obtained by setting A

(s ′
e2=0)

0,I = 1, A
(s ′

e2=0)

1,I = 0 and A
(s ′

e2=1)

0,I = 0,

A
(s ′

e2=1)

1,I = 1. In each case, one has to determine the remaining eight coefficients B
(s ′

e2)

0,I ,

A
(s ′

e2)

0,II , B
(s ′

e2)

0,II , t
(s ′

e2;1/2)

0 , B
(s ′

e2)

1,I , A
(s ′

e2)

1,II , B
(s ′

e2)

1,II , t
(s ′

e2;1/2)

1 . To do this, we need eight constrains. Four
of these are obtained imposing the continuity of both ϕs ′

e2,0(x) and ϕs ′
e2,1(x) at x = 0 and x = x0.

The other four constrains come from appropriate boundary conditions for the derivatives of
ϕs ′

e2,0(x) and ϕs ′
e2,1(x) at the impurities’ sites. To derive these, we insert the ansatz (11) into

the Schrödinger equation{
p2

2m∗ +
J

2

(
S2

e1 − 3

2

)
δ(x) +

J

2

(
S2

e2 − 3

2

)
δ(x − x0) − E

} ∑
se2=0,1

∣∣ϕs ′
e2,se2

〉 |se2; 1/2,m〉 = 0.

(15)

We now project both sides of equation (15) onto |0; 1/2,m〉 and |1; 1/2,m〉. This yields the
two equations

{
− h̄2

2m∗
d2

dx2
+

J

2

[
〈0|S2

e1|0〉 − 3

2

]
δ(x) − 3J

4
δ(x − x0) − h̄2k2

2m

} ∣∣ϕs ′
e2,0

〉
+

J

2
〈1|S2

e1|0〉δ(x)
∣∣ϕs ′

e2,1
〉 = 0 (16)
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− h̄2

2m∗
d2

dx2
+

J

2

[
〈1|S2

e1|1〉 − 3

2

]
δ(x) +

J

4
δ(x − x0) − h̄2k2

2m

} ∣∣ϕs ′
e2,1

〉
+

J

2
〈1|S2

e1|0〉δ(x)
∣∣ϕs ′

e2,0
〉 = 0 (17)

where |0〉 and |1〉 stand for |0; 1/2,m〉 and |1; 1/2,m〉, respectively. The matrix elements of
S2

e1 appearing in (16) and (17) can be computed through a change of the coupling scheme
expressing basis states |se2; 1/2,m〉 in terms of |se1; 1/2,m〉 by means of 6j coefficients. This
yields

〈0|S2
e1|0〉 = 3

2 , 〈1|S2
e1|0〉 = 〈0|S2

e1|1〉 =
√

3
2 , 〈1|S2

e1|1〉 = 1
2 . (18)

Using (18) and integrating both equations (16) and (17) across x = 0 and x = x0, we end with
the four equations

�ϕ′
s ′
e2,0

(0) = 2m∗J
h̄2

√
3

4
ϕs ′

e2,1(0) (19)

�ϕ′
s ′
e2,1

(0) = −2m∗J
h̄2

1

2
ϕs ′

e2,1(0) +
2m∗J

h̄2

√
3

4
ϕs ′

e2,0(0) (20)

�ϕ′
s ′
e2,0

(x0) = −2m∗J
h̄2

3

4
ϕs ′

e2,0(x0) (21)

�ϕ′
s ′
e2,1

(x0) = 2m∗J
h̄2

1

4
ϕs ′

e2,1(x0) (22)

where �ϕ′
s ′
e2,se2

(x) = ϕ′+
s ′
e2,se2

(x) − ϕ′−
s ′
e2,se2

(x).
Equations (19)–(22) represent the appropriate boundary conditions for the derivatives of

ϕs ′
e2,0(x) and ϕs ′

e2,1(x) at the impurities’ sites. Note that these imply a coupling between
∣∣ϕs ′

e2,0
〉

and
∣∣ϕs ′

e2,1
〉
, as witnessed by equations (19) and (20) and ultimately by the terms proportional

to 〈1|S2
e1|0〉 appearing in (16) and (17). This coupling thus results from non-commutation of

S2
e1 and S2

e2.
As equations (19)–(22) are added to the matching conditions of ϕs ′

e2,0(x) and ϕs ′
e2,1(x) at

x = 0 and x = x0 a linear system of eight equations is obtained. Once this is solved for

s ′
e2 = 0 and s ′

e2 = 1, the following transmission amplitudes t
(s ′

e2;1/2)
se2 are obtained

t
(s ′

e2;1/2)

0 = 1

δ

[−64 e2ikx0π2(ρ(E)J )2(2(1 − s ′
e2) +

√
3s ′

e2)

+ 64(πρ(E)J − 8i)(2(4i + πρ(E)J )(1 − s ′
e2) +

√
3πρ(E)J s ′

e2)
]

(23)

t
(s ′

e2;1/2)

1 = 64

δ

[√
3πρ(E)J (−8i + 3( e2ikx0 − 1)πρ(E)J )(1 − s ′

e2) + 8s ′
e2(8 − 3iπρ(E)J )

]
(24)

with

δ = {4096 + πρ(E)J [−2048i + (e2ikx0 − 1)πρ(E)J

× (−128 + 96iπρ(E)J + 9(e2ikx0 − 1)π2(ρ(E)J )2)]}. (25)

As in the case s = 3/2, the coefficients t
(s ′

e2;1/2)
se2 are functions of kx0 and ρ(E)J and,

moreover, they again do not depend on m as suggested by the notation here adopted. The latter
circumstance is due to the form (2) of H and to the fact that 6j coefficients—and thus matrix
elements (18) appearing in (16) and (17)—do not depend on m (see e.g. [19]).
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As a further signature of non-conservation of S2
e2 in the present subspace note that

t
(s ′

e2;1/2)
se2 �= 0 for se2 �= s ′

e2.

2.3. Calculation of transmittivity for an arbitrary spin state

It is important to stress again that our calculated transmission amplitudes t
(s ′

e2;1/2)
se2 are exact

at all orders in the electron–impurity coupling constant J . This follows from our quantum
waveguide theory approach which addresses the determination of the stationary states through
resolution of the Schrödinger equation. This approach is different from the perturbative one
adopted in [16] where only a finite number of electron multiple reflections between the two
impurities are taken into account performing a few iterations of the Fermi Golden rule.

The knowledge of all coefficients t
(s ′

e2;s)
se2 completely describes the transmission properties

of our system. Here we are mainly interested in calculating how an electron with a given wave
vector k and for some initial electron–impurities spin state |χ〉 is transmitted through the wire.
Thus assuming to have the incident wave |k〉|χ〉, with |χ〉 being an arbitrary spin state, it is
straightforward to see that |k〉|χ〉 is the incoming part of the stationary state

|�k,χ 〉 =
∑

s ′
e2,s,m

〈s ′
e2; s,m|χ〉 ∣∣�k,s ′

e2;s,m
〉

(26)

where s ′
e2 = 1 for s = 3/2, while s ′

e2 = 0, 1 for s = 1/2. It follows that the transmitted
part |�k,χ 〉t of (26) provides the transmitted state into which |k〉|χ〉 evolves after multiple
scattering. To calculate |�k,χ 〉t we simply replace each stationary state

∣∣�k,s ′
e2;s,m

〉
in (26) with

its transmitted part, express the latter in terms of amplitudes t
(s ′

e2;s)
se2 and rearrange (26) as a

linear expansion in the basis |se2; s,m〉. This yields

|�k,χ 〉t = |k〉
∑

se2,s,m

γse2,s,m(χ)|se2, s,m〉 (27)

with

γse2,s,m(χ) =
∑
s ′
e2

t
(s ′

e2;s)
se2 〈s ′

e2; s,m|χ〉. (28)

Coefficients (28) fully describe how an incoming wave |k〉|χ〉 is transmitted after scattering.
For instance, the total electron transmittivity T can be calculated as

T =
∑

se2,s,m

∣∣γse2,s,m(χ)
∣∣2

. (29)

3. Transmission properties for one impurity spin up states

In this section, we investigate how the electron transmission is affected by an initial spin state
of the two impurity spins belonging to the family

|�(ϑ, ϕ)〉 = cos ϑ |↑↓〉 + eiϕ sin ϑ |↓↑〉 (30)

with ϑ ∈ [0, 2π ] and ϕ ∈ [0, π ]. This family describes all the states with only one impurity
spin up, including both maximally entangled and product states. Following the calculation
scheme illustrated in subsection (2.3), the electron transmittivity T when the injected electron
spin state is |↑〉 can thus be computed setting |χ〉 = |↑〉|�(ϑ, ϕ)〉. The behaviour of T when
the impurities are prepared in the product states |↑↓〉 (ϑ = 0) and |↓↑〉 (ϑ = π/2) is plotted
in figures 2(a) and (b), respectively. A behaviour similar to a FP interferometer with partially
silvered mirrors [8], with equally spaced maxima of transmittivity, is exhibited. In figure 2(a)
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(a) (b)

Figure 2. Electron transmittivity T as a function of kx0 when the electron is injected in the state
|↑〉 with the impurities prepared in the state |↑↓〉 (a) and |↓↑〉 (b). Dotted, dashed and solid lines
stand for ρ(E)J = 1, 2, 10, respectively.

(a) (b)

Figure 3. Electron transmittivity T as a function of kx0 when the electron is injected in the state
|↑〉 with the impurities prepared in the state |�+〉 (a) and |�−〉 (b). Dotted, dashed and solid lines
stand for ρ(E)J = 1, 2, 10, respectively.

principal maxima occur around a value of kx0 �= nπ (n integer) which tends to kx0 = nπ

for increasing values of ρ(E)J , while in figure 2(b) they occur at kx0 = nπ . As ρ(E)J is
increased, maxima become lower and sharper. Remarkably, in both cases the electron and
impurities spin state is changed after the scattering (as resulting from the calculated coefficients
γse2,s,m(χ)) and the electron undergoes a loss of coherence, since we always have T < 1
[3, 9, 20]. The above product impurity spins states thus lead to the typical decoherent
behaviour encountered with magnetic impurities which avoids a perfect resonance condition
T = 1 to occur (see the introduction).

We now consider maximally entangled spin states belonging to the family (30) for
θ = π/4. Let us start with the triplet state |�+〉 = (|↑↓〉 + |↓↑〉)/√2 (see figure 3(a)).
A behaviour similar to the case of figure 2 is exhibited. Again the transmitted spin state differs
from the incident one, this indicating occurrence of spin-flip. In particular, when kx0 = nπ ,
the transmitted state turns out to be a linear combination of |↑〉|�+〉 and |↓〉|↑↑〉.

A striking behaviour however appears when the impurity spins are prepared in the
maximally entangled state |�−〉 = (|↑↓〉 − |↓↑〉)/√2: as shown in figure 3(b), the wire
becomes ‘transparent’ for kx0 = nπ . In other words, perfect transmittivity T = 1 is reached
at kx0 = nπ regardless of the value of ρ(E)J , with peaks getting narrower for increasing values
of ρ(E)J . Furthermore, under the resonance condition kx0 = nπ , the spin state |↑〉|�−〉 is
transmitted unchanged. Note that this occurs even if |↑〉|�−〉 belongs to the s = 1/2 subspace
where spin-flip is allowed (see subsection 2.2). Importantly, this phenomenon takes place
regardless of the electron spin state. Indeed, in appendix we demonstrate that the only spin
state |χ〉 allowing perfect transparency of figure 3(b) to occur is of the form

|χ〉 = (α|↑〉 + β|↓〉) |�−〉 (31)

with arbitrary complex values of α and β.
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4. Conservation of S2
12

The effect of perfect transparency presented in the previous section is clearly due to
constructive quantum interference. In this section, we show how this phenomenon can be
quantitatively analysed in terms of Hamiltonian symmetries. Let δk(x) and δk(x − x0) be the
effective representations of δ(x) and δ(x − x0), respectively, in a subspace of fixed energy
E = h̄2k2/2m∗. Using the matrix representations of electron orbital operators δk(x) and
δk(x − x0) in the basis {|k〉, |−k〉}, it is straightforward to prove that δk(x) = δk(x − x0) for
kx0 = nπ . When this occurs the non-kinetic part V of H in equation (1) assumes the effective
representation

V = Jσ · S12δk(x) = J

2

(
S2 − σ2 − S2

12

)
δk(x) (32)

with S12 = S1 + S2 being the total spin of the two impurities. This means that for electron
wave vectors fulfilling the condition kx0 = nπ , the operator S2

12 (with quantum number s12)
becomes a constant of motion whatever the strength of J . This is physically reasonable since
the condition kx0 = nπ implies that the electron is found at x = 0 and x = x0 with equal
probability and, as a consequence, the two impurities are equally coupled to the electron spin.

Furthermore, from equation (32) it follows that V vanishes for s = 1/2 and s12 = 0.
This is the case for the initial state (31) as this is an eigenstate of S2 and S2

12 with quantum
numbers s = 1/2 and s12 = 0, respectively (see also appendix). Therefore, when this
state is prepared and kx0 = nπ , no spin-flip occurs and the wire becomes transparent: an
effective quenching of the electron–impurities coupling takes place. This explains the results of
figure 3(b).

The same behaviour however does not occur for the state |↑〉|�+〉 (|↓〉|�+〉) belonging
to the degenerate 2-dimensional eigenspace of S2

12 and Sz with quantum numbers s12 = 1 and
m = 1/2 (m = −1/2), respectively. Since the orthogonal state |↓〉|↑↑〉 (|↑〉|↓↓〉) lies in
the same eigenspace it follows that, when kx0 = nπ , the transmitted spin state will result in
a linear combination of |↑〉|�+〉 and |↓〉|↑↑〉 (|↓〉|�+〉 and |↑〉|↓↓〉), implying spin-flip and
decoherence in agreement with typical behaviour of magnetic impurities. This explains the
decoherent behaviour of figure 3(a).

5. Entanglement controlled transmission and maximally entangled states QND scheme

The deeply different behaviours exhibited by |�−〉 and |�+〉 at kx0 = nπ suggest that, in
this regime, electron transmission through the wire is strongly affected by the relative phase ϕ

between the impurity spin states |↑↓〉 and |↓↑〉 appearing in (30). In figure 4 we thus plot the
transmittivity T when the electron is injected in an arbitrary spin state (α|↑〉 + β|↓〉) with the
impurities prepared in a state (30) as a function of ϑ and ϕ, for kx0 = nπ and ρ(E)J = 10.
Note how the electron transmission indeed depends crucially on ϕ. The maximum value of T
occurs when the impurities are prepared in the singlet state |�−〉, while its minima occur for
the triplet state |�+〉. In agreement with what was discussed in section 4, denoting by T�±

the transmittivity for |�±〉, decoherence effects cause T�+ < 1 (it gets smaller and smaller
for increasing values of ρ(E)J ) while T�− = 1 due to occurrence of perfect transparency.
To explain why T�− and T�+ are, respectively, maxima and minima of T, we observe that the
set of states (30) is spanned by |�−〉 and |�+〉. Since these two states belong to orthogonal
eigenspaces of the constant of motion S2

12 a linear combination of them cannot exhibit quantum
interference effects and reduces to a statistical mixture. This ensures that the transmittivity
for a generic state (30) will have intermediate values between T�+ and T�− .
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Figure 4. Electron transmittivity T at kx0 = nπ and ρ(E)J = 10 when the electron is injected in an
arbitrary spin state (α|↑〉+β|↓〉) with the impurities prepared in the state cos ϑ |↑↓〉+eiϕ sin ϑ |↓↑〉.

The most remarkable result emerging from the above discussion is that, within the set of
initial impurity spins states (30), maximally entangled states |�−〉 and |�+〉 have the relevant
property of maximizing or minimizing electron transmission. We have chosen ρ(E)J = 10 to
better highlight this behaviour, but this happens for any value of ρ(E)J . This result suggests
the appealing possibility of using the relative phase ϕ as a control parameter to modulate the
electron transmission in a 1D wire [12].

According to what was discussed in section 4, perfect transparency ensures that, once
|�−〉 is set for obtaining high conductivity of the device, this impurity spins state will not
be lost during transport of electrons through the wire. However, the same is not true for the
low conductivity state |�+〉 which is instead affected by spin-flip events and in general will
be destroyed by electron scattering (see section 4). For the above entanglement controlled-
modulation to be correctly performed, it is thus required that |�+〉 can be protected from
spin-flip events. To achieve this, conservation of S2

12 can again be fruitfully used together with
proper spin-filtering.

Assume thus that the electrons are injected in a fixed spin state, let us say |↑〉. As discussed
in section 4, in the regime kx0 = nπ conservation of S2

12 implies that |↑〉|�+〉 is transmitted
(or reflected) as a linear combination of |↑〉|�+〉 and |↓〉|↑↑〉. It follows that if the electrons
are analysed at the output of the wire in the same incoming spin state |↑〉, the state |�+〉 of the
impurity spins is protected from spin-flip6.

Let us denote by T+ the spin-polarized transmission amplitude that the electron is
transmitted in the state |↑〉. In figures 5(a) and (b) we have plotted T and T+, respectively, for
an initial impurity spins state (30) with the electron injected in the state |↑〉 and for kx0 = nπ

and ρ(E)J = 2. Note how T�+ turns out to be lowered in figure 5(b) compared to 5(a).
This is better visible in figure 5(c), where both T and T+, for ϕ = 0, are plotted: in both
cases maxima and minima occur for |�−〉 and |�+〉, respectively, but while maxima coincide,
minima are lowered in the spin-filtered case. Spin-filtering thus allows the entanglement
controlled-transmission task to work even more efficiently. We have found that T+ � T for
high values of ρ(E)J as in figure 3 for ρ(E)J = 10. Thus in these cases no spin-filtering is
required to protect |�+〉.

6 We emphasize again that conservation of S2
12 is crucial for this spin-flip protection scheme to work. Indeed, if

kx0 �= nπ the same spin-filtering procedure would leave the impurity spins in a linear combination of |↑↓〉 and |↓↑〉,
this state being in general different from |�+〉.
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(a) (b)

(c)

Figure 5. Electron transmittivity T (a) and conditional electron transmittivity T+ (b) at kx0 = nπ

and ρ(E)J = 2 when the electron is injected in the state |↑〉 with the impurities prepared in the
state cos ϑ |↑↓〉 + eiϕ sin ϑ |↓↑〉. A comparison between T (solid line) and T+ (dashed line) for
ϕ = 0 is detailed in figure 5(c).

Finally, we point out that the result showed in figure 4 opens the possibility of a new
maximally entangled states detection scheme. Indeed, electron transmission can be regarded
as a probe to detect maximally entangled singlet and triplet states of two localized spins within
the family (30). In particular, it should be clear from the above discussion that use of spin-
filtering makes the above setup a quantum non-demolition (QND) detection scheme both for
|�−〉 and |�+〉. In particular, for the state |�−〉, such scheme works as a QND even without
spin-filtering.

6. Transmission properties for aligned impurity spins states

Not all the sets of maximally entangled states exhibit the effects described in sections 3, 4
and 5. To show this, in this section, we consider a different family of impurity spins states

|φ(ϑ, ϕ)〉 = cos ϑ |↑↑〉 + eiϕ sin ϑ |↓↓〉 (33)

where again ϑ ∈ [0, 2π ] and ϕ ∈ [0, π ]. Family (33) describes all the states in which the
impurity spins are aligned.

The transmittivity T for an electron incoming in the up spin state is shown in
figures 6(a)–(c) for the cases ϑ = 0 (a), ϑ = π/2 (b) and ϑ = π/4 with arbitrary ϕ

(c). Note how the maximum of T in the case of figure 6(c) has an intermediate value between
the maximum of T of figure 6(a) and that of figure 6(b). Additionally, the results of figure 6(c)
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(a) (b) (c)

Figure 6. Electron transmittivity T as a function of kx0 when the electron is injected in the state
|↑〉 with the impurities in the initial state |↑↑〉 (a), |↓↓〉 (b) and (|↑↑〉 + eiϕ |↓↓〉)/√2 for arbitrary
ϕ (c). Dotted, dashed and solid lines stand for ρ(E)J = 1, 2, 10, respectively.

do not depend on the value of ϕ. The above behaviour can be easily understood once one
realizes that, in the case of the initial spin state (33) the two impurities indeed behave as if
they were prepared in the mixed state:

ρ = cos2 ϑ |↑↑〉〈↑↑| + sin2 ϑ |↓↓〉〈↓↓|. (34)

The phase ϕ thus plays no role for the present family of states and no interference effect occurs.
The reason for this is that |↑〉|↑↑〉 and |↑〉|↓↓〉 are eigenstates of the constant of motion Sz

with different quantum numbers m = 3/2 and m = −1/2, respectively. Therefore, unlike the
set of states (30), no quantum interference effects are possible.

Additionally, note that while in the cases of figures 6(b) and (c) a loss of electron
coherence is exhibited similarly to the cases of figures 2(a), (b) and 3(a), a coherent behaviour
completely analogous to a FP interferometer with partially silvered mirrors [8] is observed
when the impurities are prepared in the state |↑↑〉 with the electron injected in the state |↑〉,
as illustrated in figure 6(a). Indeed, the spin state |↑〉|↑↑〉 belongs to the non-degenerate
eigenspace s = 3/2,m = 3/2 where spin-flip does not occur and the impurities behave as if
they were static (see subsection 2.1). However, we emphasize that at variance with perfect
transparency induced by the impurities’ singlet state shown in figure 3(b), here T = 1 for
values of kx0 depending on ρ(E)J and only when the electron spin is initially aligned with
the spins of the impurities.

The effect of transparency presented in figure 3(b) thus requires neither the knowledge of
the coupling constant J nor any constraint on the electron spin state to be observed.

7. Generation of entangled states

To observe the entanglement dependent electron transmittivity discussed in sections 3, 4
and 5 one must be able to prepare the maximally entangled states |�−〉 and |�+〉. In
particular this is required to observe the entanglement controlled transmittivity illustrated in
section 5. Although in our Hamiltonian model (1) there is no direct interaction between the
two impurities, an indirect coupling via the electron spin takes place, as it is implicit in the
non-kinetic part of H. In this section, we thus show how electron–impurities scattering itself
can be used to generate the desired entanglement between the impurity spins.

We first observe that it is enough to be able to generate only one of the two states |�−〉
and |�+〉 since they can be easily transformed into each other by simply introducing a relative
phase shift by means of a local field. In the following, we therefore show how the triplet state
|�+〉 can be generated by electron scattering. Generation of entangled states of two magnetic
impurities via electron scattering in 1D systems has been recently investigated in [15–18].
The basic idea is to inject an electron in the state |↑〉 with the two impurities prepared in the
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Figure 7. Spin-polarized electron transmittivity T− at kx0 = nπ as a function of ρ(E)J when the
electron is injected in the state |↑〉 with the impurities prepared in the state |↓↓〉.

state |↓↓〉. Due to conservation of Sz the transmitted spin state is of the form

A|↑〉|↓↓〉 + B|↓〉|↑↓〉 + C|↓〉|↓↑〉. (35)

It follows that if the transmitted electron is analysed in the down spin state |↓〉 the two
impurities are projected in the entangled state B|↑↓〉 + C|↓↑〉 (apart from a normalization
factor) with probability |B|2 + |C|2. For a fixed electron energy, this state is not maximally
entangled for any strength of the electron–impurity coupling constant J [16]. However in
[16] the role played by the distance x0 between the impurities was not taken into account. In
the remaining of this section we will therefore consider an improved entanglement generation
scheme [12] making use of the exact knowledge of the energy eigenstates developed above.
In particular we will consider the regime kx0 = nπ . In this case, in addition to Sz, also S2

12
becomes a constant of motion. It follows that the transmitted spin state will be of the form
(see also section 4)

A′|↑〉|↓↓〉 + B ′|↓〉|�+〉. (36)

An output filter selecting only transmitted electrons in the state |↓〉 can thus be used to project
the impurities into the state |�+〉. Note that at variance with the analysis discussed in [16],
this scheme ensures that a maximally entangled state is always generated whatever the value
of J . Furthermore, we also know that this is the maximally entangled triplet state |�+〉. The
spin-polarized probability T− for the electron to be transmitted in the state |↓〉—that is to
project the impurities into |�+〉—is plotted in figure 7 as a function of ρ(E)J . A probability
larger than 20% can be reached with ρ(E)J � 1.

8. Conclusions

To discuss the possibility of observing the effects presented in this paper, in particular the
entanglement controlled transport, let us assume an electron effective mass of 0.067m0 (as in
GaAs quantum wires) and two quantum dots—each one of size 1 nm—as the impurities.
Furthermore, the electron wavelength must be large enough for the contact electron-dot
potential of our Hamiltonian model (1) to be valid. This constraint implies that the electron
energy must not exceed 2 meV. In this case, requiring that ρ(E)J � 1 (i.e., as shown in
section 7, the optimal condition for generating entangled states of the impurities) we obtain
J � 1 eV Å, which appears to be a reasonable value of the electron–impurity coupling
constant.

To prevent many-body effects, whose occurrence would make the single electron-approach
adopted in this work not valid, electrons could be shot over an additional tunnel barrier before
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interacting with the impurities as proposed in [21, 22]. This would allow the injection of single
electrons within a narrow energy range well separated from the Fermi energy. Alternatively,
this task could be accomplished using a single-electron turnstile [23] as suggested e.g. in
[22, 24].

Finally we would like to comment on the effects of decoherence on the interference
phenomena described above. Some of the most interesting features of electron spin in
semiconductor nanostructures are the long decoherence times, which is typically larger than
100 ns (but can exceed in some cases the microsecond) and the long coherence lengths, which
can be longer than 100 µm. Our approach is therefore able to predict an observable effect.
For instance for an electron energy of 2 meV, the resonance condition kx0 = nπ implies that
x0 must be in the order of 100 nm. A coherence length of this order of magnitude is common
in a GaAs quantum wires at low temperatures (e.g. see [25]). Of course a stationary state
approach to scattering like that we have used must be complemented with a dissipative map
for the evolution of the impurity spins when one is interested in the steady state which can be
obtained by the repeated injection and detection of electrons in the wire.

In summary, in this paper we have considered a 1D wire with two embedded spin-1/2
magnetic impurities. This system can be regarded as the electron analogue of a Fabry–Perot
interferometer in which the two mirrors have internal spin degrees of freedom. Adopting
an appropriate quantum waveguide theory approach, we have derived all the necessary
transmission amplitudes at all orders in the electron–impurity coupling constant. This has
allowed us to calculate the electron transmission properties for an arbitrary initial spin state of
the overall system. The typical behaviour is a loss of electron coherence induced by spin-flip
events due to scattering by the magnetic impurities. However, when the maximally entangled
singlet state of the impurity spins is prepared, we have found that perfect transparency of the
wire is obtained regardless of the electron spin state at wave vectors which do not depend on
the electron–impurity coupling constant. In the same regime, we have found that electron
transmittivity is maximized (minimized) by the singlet (triplet) entangled states of the impurity
spins. This suggests a novel use of entanglement as a tool to modulate the conductivity of a 1D
wire. Additionally, the electron transmission can be thought as a probe to detect maximally
entangled singlet and triplet states of two localized spins. When spin-filtering is performed,
this is a QND detection scheme for both these states, while it works as a QND detection
scheme for the singlet state even without spin-filtering. These behaviours have been explained
in terms of the Hamiltonian symmetries, showing that appropriate electron wave vectors allow
for an effective conservation of the squared total spin of the two impurities. Finally, we have
proposed a scheme to generate maximally entangled states via electron scattering regardless
of the electron–impurity coupling constant.
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Appendix. Set of perfectly ‘transparent’ states

In this appendix, we demonstrate that the only spin state |χ〉 allowing perfect transparency
of figure 3(b) to occur is of the form |χ〉 = (α|↑〉 + β|↓〉) |�−〉. To this we impose that the
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incoming and transmitted state coincide for values of kx0 which do not depend on ρ(E)J .
This yields the conditions

〈se2; s,m|χ〉 = γse2,s,m(χ). (A.1)

Let us define the following matrix of transmission amplitudes in the subspace s = 1/2

t =
(

t
(0;1/2)

0 t
(1;1/2)

0

t
(0;1/2)

1 t
(1;1/2)

1

)
. (A.2)

Taking into account (28) and the selection rules for se2 and s ′
e2, conditions (A.1) reduce to an

equation for s = 3/2 and a homogenous linear system of two equations for s = 1/2(
t
(1;3/2)

1 − 1
)〈1; 3/2,m|χ〉 = 0 (A.3)

(t − I) ×
(

〈0; 1/2,m|χ〉
〈1; 1/2,m|χ〉

)
= 0 (A.4)

where I is the 2 × 2 identity matrix.
Let us assume that |χ〉 has a non-vanishing projection on s = 3/2. This means that

〈1; 3/2,m|χ〉 �= 0 for at least one m and condition (A.3) gives t
(1;3/2)

1 = 1 which implies∣∣t (1;3/2)

1

∣∣2 = 1. |t (1;3/2)

1 |2 is the transmittivity of a wire with two static impurities of potential
J/4 (see subsection 2.1) which is completely analogous to a FP interferometer with partially
reflecting mirrors. Since in this case a resonance condition (transmittivity 1) occurs at values
of kx0 depending on the mirror reflectivity [8], we conclude that t

(1;3/2)

1 = 1 cannot occur at
values of kx0 independent of ρ(E)J as for the case of figure 3(b).

It follows that 〈1; 3/2,m|χ〉 = 0 ∀m (remind that coefficients t
(s ′

e2;s)
se2 are m-independent).

This implies that the spin states allowing occurrence of perfect transparency must fully lie in
the subspace s = 1/2. Such states can be determined by requiring that linear system (A.4)
has non-trivial solutions, that is

det(t − I) = 0 (A.5)

which with the help of (23) and (24) is explicitly written as
3

δ
(e2ikx0 − 1)(πρ(E)J )3[3πρ(E)J (e2ikx0 − 1) + 32i] = 0 (A.6)

with δ given by (25). Since the factor in square brackets cannot vanish for real kx0

equation (A.6) is fulfilled for

kx0 = nπ (A.7)

with n integer. Replacement of (A.7) in (A.4) yields the ρ(E)J -independent solution

〈0; 1/2,m|χ〉 = 〈1; 1/2,m|χ〉√
3

(A.8)

with arbitrary coefficients 〈0; 1/2,m|χ〉 (m = −1/2, 1/2). Rewriting these as
〈0; 1/2, 1/2|χ〉 = α/2 and 〈0; 1/2,−1/2|χ〉 = β/2, |χ〉 turns out to be of the form

|χ〉 = α
(

1
2 |0; 1/2, 1/2〉 +

√
3

2 |1; 1/2, 1/2〉) + β
(

1
2 |0; 1/2,−1/2〉 +

√
3

2 |1; 1/2,−1/2〉).
(A.9)

Using Clebsh–Gordan coefficients, spin states inside brackets turn out to be

1
2 |0; 1/2, 1/2〉 +

√
3

2 |1; 1/2, 1/2〉 = |↑〉|�−〉 (A.10)

1
2 |0; 1/2,−1/2〉 +

√
3

2 |1; 1/2,−1/2〉 = |↓〉|�−〉. (A.11)

Substitution of (A.10) and (A.11) into (A.9) proves that spin states exhibiting perfect
transparency are of the form |χ〉 = (α|↑〉 + β|↓〉) |�−〉.
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